Foreword

- Z39.50 is the rather cryptic code for a standard which is playing an increasingly important role for information distribution, especially in the library world. This standard is rather hard to penetrate. We will try to get you across the first hurdle and make you familiar with some of the most important terminology.
Goals

- Enough knowledge to
 - have an intelligent conversation with a vendor/programmer
 - understand the procedure for search and retrieval through Z39.50
- Some knowledge of
 - different architectures for deployment
 - profiles and areas of use
 - the protocol at a cursory level

Overview

- Introduction
- What is Z39.50?
- How is Z39.50 used?
- A small market overview
- How does Z39.50 work?
- Information sources
What is Z39.50?

- A standard established by NISO (National Information Standards Organization)
- Accepted by ISO (International Standards Organization) as ISO 23950
- Maintained by: Ray Denenberg, Library of Congress

ZIG - Z39.50 Implementors group

- A group of people who develop or run Z39.50 systems
- Discusses amendments, defects and clarification
- Creates implementors agreements
- Meets every 5 months (North America, Europe, Washington DC)
- Works according to the consensus principle
History

- Roots in the WAIS protocol
 - Simple S/R-protocol from the mid 80-ies
- Supplants ISO 10162/10163 Search & Retrieve (1993)
- Z39.50 - 1988
- Z39.50 - 1992 (version 2)
- Z39.50 - 1995 (version 3)

Purpose

- Interoperability for search and retrieval of information with client/server systems
 - Interoperability between vendors
 - Different databases and user interfaces
 - Interoperability between different organizations
 - E.g., using different library formats
 - Interoperability between groups of users
 - E.g., Public libraries/Academic libraries
 - E.g., libraries in different countries
 - Interoperability between communities
 - E.g., libraries, publishers, archives, museums

NOTE! Information is a very general concept!
How?

- Abstract database
 - Standardized access points
 - Attribute sets
 - Standardized queries
 - Standardized views
 - Schemas
 - Possibilities to select record syntax
 - Possibilities to select part of record
 - Searches not tied to record content

The abstract database is implemented as a front-end to the real database
Supplementary services

- Scan
- Persistent result sets
- Periodic query
- Item order
- Database update
- Export specification/invocation

Difficulties

- Different databases have different capabilities
 - Truncation, search indices, implementation of features
- Different databases have different sets of information
 - US MARC, UNIMARC, LIBRIS MARC, MAB
 - Embedded holdings or separate holdings
Profiles

- A profile is an agreement about how to use the standard
 - Which access points are to be used?
 - Which attributes are applicable?
 - In what formats should the results be supplied?
 - What services and supplementary services should be supported?
 - What options should be supported?
 - Allowed data for certain fields

Examples of profiles

- ATS-1
 - Author, Title, Subject
 - Very basic profile for libraries (obsolete)

- GILS
 - Government Information Locator Service
 - Profile for document S/R in public administration
Examples of profiles

- CIMI
 - Consortium for the Computer Interchange of Museum Information
 - Not only text. Also specifies how to retrieve images

- CIP
 - Catalogue Interoperability Protocol
 - The Committee on Earth Observation Satellites (CEOS)
 - Search profile for geo-spatial data

Examples of profiles

- GEO
 - US government profile for geo-data

- STAS
 - Scientific and Technical Attribute Set
 - Not really a profile. More about this later
Major library profiles

- **ONE**
 - OPAC Network Europe
 - Developed 1996
 - Used in the Nordic countries, Germany, UK
 - Minimum requirements for access points and element sets

- **CENL**
 - Conference of European National Librarians
 - Developed 1997, ratified late 1998
 - Expands on the ONE profile

Major library profiles

- **Finnish Z39.50 profile**
- **Danish Z39.50 profile**
 - National profiles that add functionality to the international ones
 - Specify national requirements. E.g., national classifications
 - Expand on CENL and ONE respectively
Major library profiles

- Union Catalogue Profile
 - Defines requirements for cataloguing activity to union catalogue as well as local system through Z39.50
 - Developed in Australia
 - Accepted spring 1998

Is Z39.50 any good?

- Very complex
- Difficult terminology
- Originally built on the ISO/OSI protocol
 - Dominating technology is TCP/IP
 - Difficult, theory based protocol
 - Different abstractions
 - Difficult to re-use existing support services
 - Authentication
 - Encryption
Is Z39.50 any good?

- No shrink-wrap products
- Hard to find competent professionals
- Long development cycle for products
- Subject not fully explored before standardization
- Only widespread solution to a difficult problem!

How to apply Z39.50?

- Target
- Gateway
- Origin
Target

- Implements the abstract database
- Special development
- Customization of toolkit
- Ready made server module
- Often requires advanced configuration
 - How shall the real database be represented as an abstract one?

Gateway

- A program that has 2 interfaces
- One where it acts as Origin to a Z39.50 Target
- One where it handles communication with a client application
 - Client protocol may be HTML, Telnet, Z39.50, etc.
Web gateway

- Web reader
 - HTTP server
 - Business logic
 - Z39.50 Origin

Multi-target gateway

- Z39.50 client
 - Z39.50 Target
 - Business logic
 - Z39.50 Origin
 - Z39.50 Origin
 - Z39.50 Origin

Z39.50 server
Gateway

- A more advanced Gateway can connect to several Z39.50 Targets
 - Parallel search
 - Serial search
 - Merging of results

- Even more advanced Gateways handle several different protocols on both interfaces
 - SQL, LDAP, HTML, DNS...

Advanced gateway
Origin

An Origin is normally part of a graphical client
- Hides complexity from the user
- Often needs extensive configuring
- Can sometimes access several targets simultaneously
- There are clients with a "raw" Origin interface

Market overview

Integrated systems
- Library systems
 - All large systems support Z39.50
 - Most have a dedicated client or a web gateway
 - Some smaller systems use (or rely fully on) Z39.50
 - Many systems are still version 2, though sometimes with features from version 3
 - Especially American systems
Market overview

- Standalone products
- Toolkits
- Consultants
 - Crossnet (UK)
 - Fretwell-Downing (UK)
 - Indexdata (Denmark)
 - Sunstone (Sweden)
 - Blueangel Technologies (US)
 - Finsiel (Italy)

How does Z39.50 work?

- Facilities and Services
 - A Facility consists of one or more Services
Initialization facility

- Init service
 - Establishes Z-association

 Origin
 - **Init request**
 - Version, (id/password),
 option flags,
 message sizes,
 implementation information

 Target
 - **Init response**
 - Result, version,
 option flags,
 message sizes,
 implementation information

 Negotiation about which services and which options to use
 - Origin proposes a list in “Init request”
 - Target filters the list with its capabilities and returns result in “Init response”
Search facility

- Search service

<table>
<thead>
<tr>
<th>Search request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search type, query, databases, result set limits for small, medium, large</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Search response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of records found, number of records attached status information, (records)</td>
</tr>
</tbody>
</table>

Retrieval facility

- Present service

<table>
<thead>
<tr>
<th>Present request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of records, starting point, result set</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Present response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of returned records status, (records)</td>
</tr>
</tbody>
</table>
Retrieval facility

- Segment service
 - Allows a “Present response” that is larger than max size to be split in segments
 - Two levels
 - Level 1: only whole records in a segment
 - Level 2: records can be fragmented

Result-set-delete facility

- Delete service
Access control facility

- Access-control service

Accounting/Resource control facility

- Resource-control service
- Trigger-resource-control service
- Resource-report service
 - Complex functionality to control and report resource usage
 - Mostly used for fee based operation
Sort facility

- Sort service

Browse facility

- Scan service
Extended Service facility

- Extended services service
 - Persistent Result Set Extended Service
 - Persistent Query Extended Service
 - Periodic Query Schedule Extended Service
 - Item Order Extended Service
 - Database Update Extended Service
 - Export Specification Extended Service

- Task package
 - Used to create, modify or delete an Extended Service Request

Explain facility

- Explain service
 - Gives access to information about the Z39.50 target
 - Databases
 - Access points
 - Query languages
 - Element sets
 - ...

Termination facility

- Close service
 - Terminates a Z-association

Attribute sets

- The abstract access points that are available, plus domain specific search qualifiers
 - BIB-1
 - STAS
Carrier protocols

- TCP/IP (usually)
 - TCP Port 210
- ISO OSI

BER

- Basic encoding rules
 - A way of coding data for transmission
 - Coded form not human readable

- Identifier
- Length
- Content
ASN.1

- Abstract Syntax Notation 1
- An implementation independent way of describing data

```
Permissions ::= SEQUENCE OF SEQUENCE{
  userId [1] IMPLICIT InternationalString,
  allowableFunctions [2] IMPLICIT SEQUENCE OF INTEGER{
    delete (1),
    modifyContents (2),
    modifyPermissions (3),
    present (4),
    invoke (5))}
```

APDU

- Application Protocol Data Unit
 - The packages that contain requests and responses

```
InitializeRequest ::= SEQUENCE {
  referenceId OPTIONAL,
  protocolVersion ProtocolVersion,
  options [5] IMPLICIT INTEGER,
  preferredMaxMessageSize [6] IMPLICIT INTEGER,
  idAuthentication [7] ANY OPTIONAL, -- see note below
  implementationId [110] IMPLICIT InternationalString OPTIONAL,
  implementationName [111] IMPLICIT InternationalString OPTIONAL,
  implementationVersion [112] IMPLICIT InternationalString OPTIONAL,
  userInformationField [11] EXTERNAL OPTIONAL,
  otherInfo OtherInformation OPTIONAL
  --Note:
  --For idAuthentication, the type ANY is retained
  --for compatibility with earlier versions.
  --For interoperability, the following is recommended
  --IdAuthentication [7] CHOICE {
    --open    VisibleString,
    --idPass   SEQUENCE {
      --groupId [0] IMPLICIT InternationalString OPTIONAL,
      --userId [1] IMPLICIT InternationalString OPTIONAL,
      --password [2] IMPLICIT InternationalString OPTIONAL,
    },
    --anonymous                  NULL,
    --other                      EXTERNAL
    --May use access control formats for "other". See Appendix 7 ACC.
```

A Z39.50 Introduction
Queries

- Query types
 - Type-0: proprietary between 2 parties
 - Type-1: RPN (standard)
 - Type-2: ISO 8777
 - Type-100: Z39.58
 - Type-101: Extended RPN (v 2)
 - Type 102: Ranked List query

Type-1 Query

- Consists of
 - One or more operands, linked with Boolean operators (AND, OR, AND_NOT)
 - Every operand is a search expression consisting of 7 parts
Operands in Type-1

0. Term
- What you are looking for

1. Use Attributes
- Which abstract access point to use

2. Relation Attributes
- Relation between the term and the data in the access point
- E.g. less than, equals, phonetic equals

Operands in Type-1

3. Position Attributes
- Where in the access point should the term be?
- E.g. first in field, first in subfield

4. Structure Attributes
- How is the term to be treated?
- E.g. as phrase, as words, as date, as normalized name
Operands in Type-1

5. Truncation Attributes
- Should truncation be applied on the match?
- E.g., left truncation, right and left truncation, no truncation, regular expression

6. Completeness Attributes
- What is the term to be matched against?
- E.g., part of subfield, whole subfield, whole field

Example of query

- ("Mark Twain", 1:1003, 2:3, 3:1, 4:1, 5:100, 6:1)
- ("Clemence, Samuel", 1:1003, 2:3, 3:3, 4:101, 5:100, 6:2)
- AND-NOT
Result sets
- Default result set
- Named result sets
- Persistent result sets
- All contain Result Set Items

Database schema
- Definition of the layout of the abstract database
- Contains Elements
 - Element specification
 - Element set name
Tags

- Identifiers that uniquely label an element or a substructure

```
schemaIdentifier
datatype: OBJECT IDENTIFIER
```

Tag sets

- Sets of identifiers for specific data structures

```
1. schemaIdentifier
datatype: OBJECT IDENTIFIER
2. elementsOrdered
datatype: BOOLEAN
3. elementOrdering
datatype: INTEGER
4. defaultTagType
datatype: INTEGER
```
Skipped details

- Composition Specification
 - A way of indicating which subpart of a data structure you want to retrieve

Summary

- Z39.50 is a complex standard that allows interoperability at several levels
- However, interoperability is not for free. It takes knowledge and a lot of hard work to make systems truly interoperable
More information

- The standards text
- Z39.50 Maintenance agency
 http://lcweb.loc.gov/z3950/agency/
 - The standards text
 - Links to profiles
 - Information about implementors
 - Amendments, defects, clarifications, ZIG commentaries
 - Information about upcoming meetings, minutes from previous

More information

- Indexdata AS
 - YAZ toolkit (written in C)
 http://www.indexdata.dk
- OCLC
 - BER Utilities (C, C++ and Java)
 - Toolkit (Java)