
109-00/df

INTRODUCTION TO STRUCTURED QUERY LANGUAGE

by
Justin Burruss

Presented at
General Atomics

San Diego, California

June 2000

109-00/df

OUTLINE

1. Relational Databases
2. Structured Query Language
3. References

109-00/df

A RELATIONAL DATABASE MANAGES DATA

l Applications do not interact with the data directly
but instead access the database through the
Relational Database Management System (RDBMS).

l A relational database works in concert with MDSplus/PTDATA.

 MDSplus is not optimized for queries across multiple shots.
 MDSplus is hierarchical, but not relational.
 MDSplus/PTDATA stores all the data.

l A relational database stores highlights of the data.
 Optimized for queries (e.g. what shots had plasma in

1999?)

l You can survey, then drill down for more detailed
information.

Database
RDBMS

Applications

109-00/df

RELATIONAL DATABASES STRUCTURE DATA INTO RELATIONS

l A relational database is a set of relations…
l A relation is a set of tuples…
l A tuple is a set of attributes.

l In more familiar terms:

 A relational database is a set of tables…
 A table is a set of rows…
 A row is a set of fields.

l Tables in a database should be

related. These example tables are
related through the owner and
username columns.

Computers
Computer Id Type Owner

101 DEC Alpha keithk

102 NT Server parker

103 NT Server meyer

104 SPARC-2 keithk

Users
Username First Name Last Name
keithk Kristi Keith
parker Carl Parker
meyer William Meyer

109-00/df

A RELATIONAL DATABASE IS STRUCTURED

l Each table is unique—no two tables may have the same name.

l Each row in a table is unique—no two rows in a table may be the same. One or more

columns in the row should uniquely identify that row. This unique identifier is called a
primary key.

l Each field is complete value (no pointers or derived values).

l An empty field has a well defined value: null. Null is not the same as an empty string or

zero—null is a distinct value.

l Each table should be related to other tables in the database (if its unrelated you should

put it in a different database).

l You can access any value using the table name, column name, and the value of the primary

key that defines the row in which it is stored.

109-00/df

SQL IS THE LANGUAGE USED BY ALL LEADING RELATIONAL DATABASE
MANAGEMENT SYSTEMS

l SQL (Structured Query Language) was developed in the 1970s.

l It was standardized by ANSI and ISO in the 1980s.

l It is supported by all major database vendors.

l It is a declarative language (and thus easier to use than procedural languages).

l It is used for:

 Building databases
 Storing data
 Retrieving data
 Managing databases

l We will only discuss retrieving data…

109-00/df

USE SELECT TO RETRIEVE DATA

 SELECT columns you want
 FROM table

l Examples:
 SELECT shot, time_of_shot, pulse_length
 FROM summaries

 SELECT *
 FROM shots

l The * is a shortcut for selecting all columns in a table.

l You can use the DISTINCT keyword to remove duplicate values.

l Example:
 SELECT DISTINCT shot
 FROM entries

109-00/df

USE THE WHERE CLAUSE TO SPECIFY WHICH ROWS YOU WANT

 SELECT columns you want
 FROM table
 WHERE condition

l You can use the following operands in your condition:
 = equal to
 > greater than
 < less than
 >= greater than or equal to
 <= less than or equal to
 <> not equal to
 IS NULL equal to null
 BETWEEN x AND y between x and y inclusive
 IN(s1, s2, …, sn) in the set s

l Examples:
 SELECT first_name, last_name
 FROM personnel
 WHERE uid > 500

 SELECT first_name, last_name
 FROM personnel
 WHERE uid IN(315, 316, 708)

109-00/df

YOU CAN USE LIKE WHEN DEALING WITH STRINGS

l LIKE lets you match strings. You can use the % wildcard to match 0 or more characters.

The _ wildcard will match exactly one character.

l Examples:

 ‘fusion’ matches ‘FUSION’ and ‘fusion’
 ‘%ion’ matches ‘fusion’, ‘cold fusion’, and ‘a red lion’
 ‘_ion’ matches ‘lion’ but not ‘fusion’

l This example finds people with the name ‘Peterson’ and ‘Petersen’:
 SELECT first_name, last_name, job
 FROM people
 WHERE last_name LIKE(‘peters_n’)

l Results:

first_name last_name job
Chris Petersen 2nd Baseman, Chicago Cubs
Peter Petersen Assistant Program Director, DIII-D Program
Cassandra Peterson Actress
Peter Peterson Chairman, Council on Foreign Relations

109-00/df

USE AND, OR & NOT TO SPECIFY MULTIPLE CONDITIONS

l Examples:
 SELECT shot, time_of_shot, pulse_length
 FROM summaries
 WHERE ip > 1000000
 OR btor > 2

 SELECT *
 FROM entries
 WHERE topic = ‘BEAMS’
 AND username = ‘phillips’

 SELECT *
 FROM summaries
 WHERE patch_panel = ‘1.5DNBUP5’
 AND ip >= 1500000
 AND (btorsign = -1 OR btormax > 2.05)
 AND kappa BETWEEN 1.5 AND 1.8
 AND NOT pulse_length < 3.5

109-00/df

USE AGGREGATE FUNCTIONS TO DO SOME SIMPLE MATH

l Aggregate Functions:
 COUNT(x) Count non-null occurrences of x
 SUM(x) sum of x
 AVG(x) average of x (ignoring null values)
 MIN(x) minimum x
 MAX(x) maximum x

l Examples:
 SELECT COUNT(shot)
 FROM shots

 SELECT MAX(ip)
 FROM summaries

 SELECT MAX(ip) / 1000000
 FROM summaries

l Note: the / 1000000 just divides the result by 1000000.

109-00/df

USE ORDER BY TO SORT YOUR RESULTS

l You may choose to sort your query results using ORDER BY.
 SELECT columns
 FROM table
 ORDER BY criteria

l You may use the ASC and DESC keywords to specify ascending or descending order.

l Examples:
 SELECT shot, a, r, kappa
 FROM summaries
 ORDER BY shot DESC

 SELECT first_name, last_name
 FROM personnel
 ORDER BY last_name ASC

109-00/df

USE GROUP BY TO GROUP YOUR QUERY RESULTS

l The GROUP BY clause lets you group your results based on the criteria you supply.

 SELECT columns
 FROM table
 GROUP BY criteria

l This example finds the number of males and females in the people table:

 SELECT sex, count(last_name)
 FROM people
 GROUP BY sex

l Results:
sex

 m 220
 f 216

109-00/df

USE THE HAVING CLAUSE TO APPLY A SEARCH CONDITION TO GROUPS

l The HAVING clause is used to apply search conditions to groups.
 SELECT columns
 FROM table
 GROUP BY criteria
 HAVING condition

l Example:
 SELECT shot, COUNT(shot)
 FROM entries
 GROUP BY shot
 HAVING COUNT(shot) > 15

l Results:

shot

 98303 22
 98777 16

109-00/df

USE JOINS WHEN YOU NEED DATA FROM TWO OR MORE TABLES

l It is often necessary to look in multiple tables for the data you need. To get data from

more than one table, use joins.

l A join combines two or more tables into a single (larger) table.

l Example:

Users
Username First Name Last Name
keithk Kristi Keith
parker Carl Parker
meyer William Meyer

Computers
Computer Id Type Owner

101 DEC Alpha keithk

102 NT Server parker

103 NT Server meyer

104 SPARC-2 keithk

Users joined with Computers where owner = username
Username First Name Last Name Computer Id Type

keithk Kristi Keith 101 DEC Alpha

parker Carl Parker 102 NT Server

meyer William Meyer 103 NT Server

keithk Kristi Keith 104 SPARC-2

109-00/df

AN INNER JOIN IS LIKE AN INTERSECT

Users
Username First Name Last Name
keithk Kristi Keith
parker Carl Parker
meyer William Meyer
schacht Jeff Schachter

Computers
Computer Id Type Owner

101 DEC Alpha keithk

102 NT Server parker

103 NT Server meyer

104 iMac nobody

105 SPARC-2 keithk

 Users inner joined with Computers

Username First Name Last Name Computer Id Type

keithk Kristi Keith 101 DEC Alpha

parker Carl Parker 102 NT Server

meyer William Meyer 103 NT Server

keithk Kristi Keith 104 SPARC-2

109-00/df

OUTER JOINS ARE LIKE UNIONS

Users
Username First Name Last Name
keithk Kristi Keith
parker Carl Parker
meyer William Meyer
schacht Jeff Schachter

Computers
Computer Id Type Owner

101 DEC Alpha keithk

102 NT Server parker

103 NT Server meyer

104 iMac null

105 SPARC-2 keithk

Users outer joined with Computers

Username First Name Last Name Computer Id Type

keithk Kristi Keith 101 DEC Alpha

parker Carl Parker 102 NT Server

schacht Jeff Schachter null null

null null null 104 iMac

meyer William Meyer 103 NT Server

keithk Kristi Keith 104 SPARC-2

109-00/df

“A RIGHT OUTER JOIN B” GRABS ALL OF B, BUT ONLY THE PART OF A
THAT MATCHES B

Users
Username First Name Last Name
keithk Kristi Keith
parker Carl Parker
meyer William Meyer
schacht Jeff Schachter

Computers
Computer Id Type Owner

101 DEC Alpha keithk

102 NT Server parker

103 NT Server meyer

104 iMac null

105 SPARC-2 keithk

 Users outer joined with Computers

Username First Name Last Name Computer Id Type

keithk Kristi Keith 101 DEC Alpha

parker Carl Parker 102 NT Server

null null null 104 iMac

meyer William Meyer 103 NT Server

keithk Kristi Keith 105 SPARC-2

109-00/df

THE SQL2 SYNTAX FOR JOINS USES KEYWORDS

l SQL2 syntax for inner join:
 SELECT columns
 FROM table1 INNER JOIN table2
 ON table1.keycolumn = table2.keycolumn

l Example:
 SELECT shots.shot, shot_type, time_of_shot
 FROM shots INNER JOIN summaries
 ON shots.shot = summaries.shot

l Notice that we use tablename.columnname to indicate which column we are referring to.

l Join keywords are: INNER, LEFT OUTER, RIGHT OUTER, and FULL OUTER.

l Example:
 SELECT shots.shot, shot_type, ip
 FROM shots LEFT OUTER JOIN summaries
 ON shots.shot = summaries.shot

l There is an older syntax (SQL1) for joins that we’ll save for another discussion.

109-00/df

SUBQUERIES CAN BE NESTED INSIDE OF QUERIES

l A subquery is any query embedded inside another query.

l Examples:
 SELECT *
 FROM shots
 WHERE shot = (SELECT MAX(shot) FROM summaries)

 SELECT run, shot
 FROM shots
 WHERE shot IN (SELECT shot FROM summaries)

109-00/df

WE’VE DISCUSSED MOST OF THE QUERYING FEATURES OF SQL

l We’ve discussed:

 SELECT
 WHERE
 LIKE
 AND, OR, and NOT
 GROUP BY
 HAVING
 ORDER BY
 The most common types of Joins

l We will leave these SQL features for another discussion:

 Cross and Union Joins
 SQL1 Syntax Joins
 Aliases
 EXISTS, ANY, and ALL (subquery tests)
 Unions
 Indices & Views
 Updates & Deletions
 Creating Tables
 SQL Security

109-00/df

REFERENCES

Groff, James R., Weinber, Paul N., LAN Times Guide to SQL, (Osborne MacGraw-Hill, Berkeley,

California, 1994)

Codd, E.F., “A Relational Model of Data for Large Shared Data Banks”, reprinted from Communications

of the ACM, Vol. 13, No. 6 (1970) 377.

http://d3dnff.gat.com/D3DRDB/resources.html

